数学学习活动计划
计划不要排太满太紧,贪心的计划是难以做到的。小编给大家分享数学学习活动计划参考,方便大家参考数学学习活动计划怎么写。
数学学习活动计划篇1
时光如水,岁月如梭。转眼间,一个学期已经结束了,回顾一学期来,我在数学方面取得了很大的进步,现将取得进步的原因总结如下:
一、培养对数学的兴趣
孔子曰:“知之者不入好之者,好知者不如乐之者。”这句话说得是非常有道理的,它深刻地阐释了兴趣对学习的重要性。刚开始,我先硬着头皮学数学,并投以很大的热情,争取做的好一些,慢慢地,我的做法得到了老师和同学们的夸奖和鼓励,自然我也就更愿意做了,就这样,兴趣培养起来了。也善于思考了,
数学成绩也提高了不少。
二、有持之以恒的精神,保证计划落实到位
自数学计划制定之日起,我就严格要求自己按照以上计划执行,不给自己打折扣,每天的任务保证完成。不给自己找种种借口拖延计划的完成,要求自己必须今日事今日做。我经常告诫自己“任务不能积累,因为明天又有新的任务在等待着你”。就这样,凭着持之以恒的精神和坚持不屑的努力,我每天都做到课前预习,课下复习的好习惯,这对我的数学提高有了很大的帮助。
三、加大练习力度
要想学好数学,多做题时难免的。刚开始我从最基础的题入手,以课本上的习题为准,反复练习打好基础,然后,再找一些课外习题,帮助自己开拓思路,提高自己分析、解决问题的能力,掌握一些解题规律。对于易错、常错的题,我都把他们记录到纠错本上,加强记忆。再有,每次做题时,我都让自己高度集中,能够进入状态,做题时我要求自己将步骤写完整,认真、仔细,以免这些错误造成考试时的失分。
以上是我在学习数学上的一些做法,尽管如此,我在数学中还存在许多不足,如缺乏耐心、不能很好的举一反三等。这些是我以后在学习数学中需要改进的地方,在今后的学习中,我一定克服以上不足,使自己的数学成绩更上一层楼。
数学学习活动计划篇2
随着信息时代的不断发展,电子表格的应用越来越广泛,尤其是MicrosoftExcel,成为企业和个人日常工作不可或缺的工具之一。因此,学习Excel函数是必不可少的。Excel函数通过将输入的数据进行处理和计算,直接提供输出结果,可以为企业和个人节省大量的时间和精力。
Excel函数种类繁多,如SUM、IF、VLOOKUP等等,为学习者提供了丰富的处理数据的方法。学习Excel函数,对于提高办公工作效率、数据分析和决策具有重要的意义。
学习Excel函数的计划可以从以下几个方面展开。
第一步,了解Excel函数的基本知识。首先,需要了解Excel函数的具体作用,如何输入函数、函数的语法结构、不同函数之间的关联等基本知识。我们可以通过阅读Excel的帮助文档或在线视频教程来获得这些知识。
第二步,挑选几个常用的函数进行深入学习。SUM函数、IF函数、VLOOKUP函数是Excel中最常用的功能之一,我们可以从这些经典函数入手,深入理解函数的用途和使用方法。
第三步,通过实际操作进行学习。选择实际案例,利用Excel函数进行数据分析,从而实践所学的知识,加深对Excel函数的理解和掌握,提高办公工作效率。
第四步,了解Excel函数的扩展内容。了解Excel中提供的其他高级函数,如逻辑函数、日期和时间函数、文本函数等,掌握一些复杂程度更高的技能,以增强数据处理和分析的能力。
第五步,通过练习巩固所学知识。练习Excel函数题库,并针对自己掌握不好或者不了解的函数进行强化练习,巩固所学知识。
总之,学习Excel函数需要有坚实基础,通过把握基本知识、深入学习常用函数、实际操作和理论知识相结合等方法,才能够掌握Excel函数的技能,快速地进行数据处理和分析,提高办公效率,为自己和企业带来更好的收益。
数学学习活动计划篇3
数学对于我们的生活、经济、科学和技术都起着重要的作用,因此,在学生的各阶段中,数学的教学都是非常重要的。为了更有效的学习数学,我们需要有一份合理的数学学习计划。本文将详细阐述如何制定一份合理的数学学习计划,并讨论其重要性和实现其可行性的方法。
第一步是制定一个长期目标。这个长期目标可以是在高考中获得优异的成绩或者在留学或求职时获得更好的机会。长期目标的存在可以帮助学生明确自己的方向并且为之而不懈地努力。基于此,学生需要评估自己现阶段的数学水平,从而明确自己所掌握的知识和需要进行巩固的知识点。同时,学好数学,不是凭空出现的,需要通过日常勤奋学习来积累,制定数学学习计划是非常必要的。
第二步是确定时间表。以长期目标为基础,学生可以制定出一份适合自己的时间表,用来帮助他们合理分配时间,并为日常学习提供一个清晰明确的计划。对于一个学生而言,时间表应该包含了每天、每周、每月和每学期的学习安排,包括每个知识点的学习目标、学习方式、复习时间和练习等。与此同时,时间表也应该能够适应学生的生活和学习周况,例如学生课程表或较为繁忙的课外活动等因素。在制定时间表时,应该注重合理利用时间,避免浪费,同时还应该注重心理健康,尽可能保证生活和学习的平衡。
第三步是选择学习资源。学习资源既包括纸质教材、电子教材、翻译的书本和视频,还包括一些辅导报告、辅导讲义、课堂笔记甚至是学习app等网上教学资源。对于一个学生而言,根据自己的需要进行精选,以保证学习效果最佳。同时在选择学习资源时,也应该注意好评度和具体适用学习场景,最好都经过实践核实过。
第四步是培养好的学习习惯。培养好的学习习惯是长期学好数学的关键因素之一。学生可以从以下几个方面培养良好的学习习惯:领会、理解和强化重点知识点;不断做题,独立思考和解决问题的能力;交流,发展了解和与他人合作解决问题的能力等,有计划的进行日常的课外阅读同步加强科技硕贵知识,并渐进式加强自身的领悟和解题的把控力与层次递进式的积极思考。
总之,数学对于每个学生都非常重要,制定数学学习计划并坚持执行它是学生学好数学的关键所在。科学的设定和执行计划,有助于学生掌握好数学知识,培养好的学习习惯及价值意义。当然,与此同时,学生需要不断努力,运用适当的学习方法,保持热情,对自己的能力有信心,坚信自己可以成功,最后在学习道路上不断前进。
数学学习活动计划篇4
数学月考前学习计划
作为一名学生,考试是不可避免的。而数学作为一门基础学科,更是会影响到很多方面的成绩。所以,为了在数学学科上取得更好的成绩,需要制定一份合理的学习计划。
第一周:复习高中数学的基础知识
这一周的主要任务是进行高中数学基础知识方面的巩固和复习。这里包括了高中数学中的基础公式和定理,例如平面几何的相似、勾股定理和三角函数的周期等内容。这些知识点是数学学科中的基础内容,只有对其掌握得越好,后续的学习才会更加有效。
建议方法:
1.回顾高中的数学笔记和教材,对基础知识进行整理和归纳。
2.做高中数学基础知识的相关习题,选做那些相对难度较大的题目,以便更好地检查自己的掌握程度。
3.通过网络或者图书馆查找高考数学的历年试题,并尝试做出相关试题,来查看自己对知识的掌握情况。
第二周:加强对数学的分析与统计方面的学习
这一周的任务是加深对数论、组合数学、概率论、统计学等数学分析和统计方面的学习知识,本周需要着重掌握这些内容的概念、定理和方法。
建议方法:
1.阅读相关章节的教材和辅导书,认真理解概念和定理,在学习的过程中注重实例分析和练习。
2.通过网络或者图书馆查找历年高考数学试题中的内部分析和统计学相关试题,并尝试做出其中的难题,以巩固自己的知识并提高解题能力。
3.多做模拟试题,将做题时间缩短,提高做题的效率。
第三周:让自己的数学知识提高到应用性阶段
在前面的学习中,我们已经对数学的基础知识点和分析统计方面的知识培养了较好的理性解决能力。这一周,我们需要进一步提高自己的能力,将已有的知识应用到实际问题中来解决。
建议方法:
1.在教材或辅导书中查找相关题目,学习和掌握第一步,锻炼对实际问题的观察、分析和解决能力。
2.参加数学竞赛,可以提高自己竞赛技能,提高应对复杂问题的能力,同时也可以锻炼自己的思考和创新能力。
3.和同学或老师讨论数学问题,以便有机会交流自己的解题经验、思维和做题方法。
总结:
这份学习计划涵盖了数学的基础知识和分析统计两方面的知识,最后还强调了应用能力的培养,所谓“重在实践”,最终目的是提高自己的数学成绩,但同时也不应该忽视数学的思维、创新和研究能力的培养,这才是数学学科才本质的内容。
数学学习活动计划篇5
一、树立整体目标
复习的过程中,给自己树立一个整体的目标。比如通过一个假期的学习,使自己的数学成绩提高十分,或者二十分。目标定好了,接下来我们就要进行具体的分解,进行整体分析,回顾下这个学期自己哪些知识点掌握的比较好,那些比较生疏甚至不会。那么就把重点放在这些薄弱环节,如果和正方形相关的不熟练那就重点复习正方形这方面的知识,解方程不行就练习解方程。
二、重视课本的基础知识
任何科目的学习都万变不离其宗,数学也不例外,数学里面的这个“宗”,就是课本,因为所有的学习知识都来源于课本,考试的内容有些高于课本,但是基础知识点还是不会变化的,考试的试题就是课本知识的衍生物,要一点一点去挖掘试题背后的东西,找到其中要考试的重点部分。建议同学们在寒假期间复习数学的过程重要吃透课本的基础知识。
三、做好练习题
在提升数学成绩的过程中,一定要做题。数学的复习一定是要配合上做题来进行的,找一些往年期末考试的试卷做,或者自己买的资料老师发下来的试卷等等,最好是有参考答案的,这样做完以后可以自己看看有没有错,很多的数学试卷答案只有一个答案,没有解题过程,那就可以在网上搜,或者说问同学、问老师。
四、经常总结反思
要想提高数学成绩,一定要具备总结性思维,并且要经常反思。做题时我们不能做了就扔,一定要学会解题后反思。如做错的题,我们是卡住哪一个步骤,为什么答案中这道题这个步骤是这么写的,为什么会用这个公式,公式的出现是为了解决什么问题等等,这些都是需要我们好好反思总结。反思题意,出题人的意图,题目牵扯到哪些知识内容;反思总结可以让我们得到方法,深刻理解知识技能的运用,这样自然做题就会越做越好。
数学学习活动计划篇6
数学学习计划
数学是一门极为重要且基础性的学科,为我们的日常生活和职业发展提供了极大的帮助。但对于许多人来说,数学是一门难以掌握的学科。那么如何提高数学能力呢?在这里,我们可以制定一份数学学习计划,通过有效的方法和计划,逐步提高自己的数学能力。
1.制定学习计划
首先,我们需要确定自己的学习目标和计划。根据自己的学习水平和目标,可以制定每周的学习计划,并注重下列几点:
(1)拍摄一些相关的学习笔记。
(2)进行数学短语跟读练习和数学题目的练习。
(3)利用教学网站等资源,在线学习并参加在线公开课等活动。
2.养成良好的学习习惯
良好的学习习惯对于提高数学能力起着至关重要的作用。首先,我们需要养成坚持学习的习惯。确定规定的每周学习计划,并按计划执行。第二,注意学习方法。通过多种方式,如利用教学网站、图书、在线公开课等资源,缩短学习时间。第三,要对自己的数学基础进行常规检查,发现自己的弱点并对其进行集中学习。
3.充分利用教学资源
在如今的数字时代,网上教育已经成为大众学习的主要渠道。我们可以通过网络上的教学资源来提高自己的数学能力。有许多有趣并且高效的在线学习资源,你可以尝试其中的同时,对自己的数学知识进行加强。
4.学习团队协作
在学习过程中,找到一些志同道合的朋友或同学一起学习,加强团队协作与互相合作的力量。一个集体的力量会更大,可以以此来解决问题和相互学习,帮助自己走向成功的道路上迈出更快更坚定的一步。
5.多次复习
数学学习习惯除了坚持外,在知识点的掌握上也占着至关重要的位置。例如,通过不断的复习可以形成记忆,而记忆一旦掌握就可以快速找出需要的答案,流畅操纵式处理每一个问题,从而获得更多的信心和荣誉。
总之,通过制定好计划,建立好学习习惯,发掘好学习资源,掌握好学习方法,协作团队,以及强化学习后多次复习,这些学习的方法都可以帮助我们提高学习效果和提高数学的能力,在一个更高的层次上,也为我们的未来发展打下坚实的基础。
数学学习活动计划篇7
学习时间:3月份-6月份
学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容
学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。
学习计划:
一、3月24号上午9:00----11:00
不定积分
1.原函数、不定积分的概念;
2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;
3.会求有理函数和简单无理函数的积分.
定积分
1.定积分的概念和性质,定积分中值定理;
2.定积分的换元积分法与分部积分法;
3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;
4.反常积分的概念与计算;
5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.
:本章的基础课后习题
二、3月31号上午9:00----11:00
微分方程
1.微分方程及其阶、解、通解、初始条件和特解等概念;
2.变量可分离的微分方程及一阶线性微分方程的解法;
3.齐次微分方程的解法;
4.线性微分方程解的性质及解的结构;
5.二阶常系数齐次线性微分方程的解法;
6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.
作业:本章的基础课后习题
三、4月7号上午9:00----11:00
来总部阶段测评
四、4月14号上午9:00----11:00
多元函数微分学
1.二元函数的概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;
4.多元复合函数一阶、二阶偏导数的求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
作业:本章的基础课后习题
五、4月21号上午9:00----11:00
重积分
1.二重积分的概念和性质,二重积分的中值定理;
2.会利用直角坐标、极坐标计算二重积分.
级数
1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;
2.几何级数与级数的收敛与发散的条件;
3.正项级数收敛性的比较判别法和比值判别法;
4.交错级数和莱布尼茨判别法;
5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;
6.函数项级数的收敛域及和函数的概念;
7.幂级数的收敛半径、收敛区间及收敛域的求法;
8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;
9.函数展开为泰勒级数的充分必要条件;
10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
作业:本章的基础课后习题
六、4月28号上午9:00----11:00
行列式
1.行列式的概念和性质,行列式按行(列)展开定理.
2.用行列式的性质和行列式按行(列)展开定理计算行列式.
3.用克莱姆法则解齐次线性方程组.
作业:本章的基础课后习题
对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式
七、5月5号上午9:00----11:00
矩阵
1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.
2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.
3.方阵的幂与方阵乘积的行列式的性质.
4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.
5.伴随矩阵的概念,用伴随矩阵求逆矩阵.
6.分块矩阵及其运算
作业:本章的基础课后习题
八、5月12号上午9:00----11:00
总部考试
九、5月19号上午9:00----11:00
向量与线性方程组
1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.
2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.
3.非齐次线性方程组解的结构及通解.
4.用初等行变换求解线性方程组的方法.
5.维向量、向量的线性组合与线性表示的概念
6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.
7.向量组的极大线性无关组和向量组的秩的概念和求解.
8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.
作业:本章的基础课后习题
十、5月26号上午9:00----11:00
矩阵的特征值和特征向量
1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.
2.规范正交基、正交矩阵的概念以及它们的性质.
3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.
4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.
5.实对称矩阵的特征值和特征向量的性质.
作业:本章的基础课后习题
二次型
1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.
2.正交变换化二次型为标准形,配方法化二次型为标准形.
3.正定二次型、正定矩阵的概念和判别法.
作业:本章的基础课后习题
十一、6月2号上午9:00----11:00
考试
十二、6月9号上午9:00----11:00
随机事件和概率
1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.
2.概率、条件概率的概念,概率的基本性质.
3.会计算古典型概率和几何型概率.
4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.
5.事件独立性的概念与计算.
作业:本章的基础课后习题
随机变量及其分布
1.随机变量的概念,分布函数的概念及性质.
2.独立重复试验的概念与有关事件概率的计算.
3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.
4.连续型随机变量及其概率密度的概念,几种常见的.连续型随机变量:均匀分布、正态分布、指数分布.
5.随机变量函数的分布.
作业:本章的基础课后习题
十三、6月16号上午9:00----11:00
多维随机变量及分布
1.多维随机变量的概念,多维随机变量的分布的概念和性质.
2.二维离散型随机变量的概率分布、边缘分布和条件分布.
3.二维连续型随机变量的概率密度、边缘密度和条件密度.
4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.
5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.
6.两个随机变量简单函数的分
作业:本章的基础课后习题
十四、6月23号上午9:00----11:00
考试
十五、6月30号上午9:00----11:00
随机变量的数字特征
1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.
2.会运用数字特征的基本性质,并掌握常用分布的数字特征.
3.随机变量函数的数学期望.
4.切比雪夫不等式.
作业:本章的基础课后习题
大数定律和中心极限定理
1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
作业:本章的基础课后习题
样本及抽样分布
1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.
2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.
3.正态总体的常用抽样分布.
作业:本章的基础课后习题
矩估计和最大似然估计
1.参数的点估计、估计量与估计值的概念.
2.矩估计法(一阶矩、二阶矩)和最大似然估计法.
作业:本章的基础课后习题
7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。
7月底到8月中旬:暑假强化班
学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。
数学学习活动计划篇8
数学月考前学习计划
作为学生,我们无法拒绝考试这个必经之路。对于数学科目而言,操作性强、知识面广、考试内容又往往占据整个考试的比重,所以每次数学考试前都需要做好充分的复习准备。本文旨在为大家提供一份数学月考前学习计划,希望可以帮助大家在考试前做好最好的准备。
计划一:建议良好的学习状态
想要取得好的成绩,首先要保证良好的学习状态。只有在有良好的精神状态下学习,才能更好地吸收知识。建议同学们保持充足的睡眠和合理的饮食,适量的运动可以让大家保持积极的心态以及高效的学习状态。
计划二:合理安排学习时间
平时我们会在各种时间段里安排自己的学习,而在考试前需要更加合理地科学地安排学习时间,制定出一份考试前的学习计划。这份计划应按照知识点和模块来分类,制定出合理的时间、任务和量,能让同学们逐步地打好学习基础,同时也可以提高学习效率。在计划中,可以设置长时间的计划,需要能够在保证效率的同时,坚持完成任务,形成自律自制的好习惯。
计划三:重点抓好知识点
数学知识相当繁多,因此在学习的时候应该把重心放在重点上,重点抓好知识点。在复习的过程中,可以将知识点分类,确定重点和难点,将其纳入学习计划,针对性地进行复习。在复习过程中,可以根据知识点划分,通过不断反复练习,加深对知识点的理解和记忆,从而达到很好的复习效果。
计划四:加强理解和应用能力
不要仅仅停留在记忆的层面上,而是应该在知识记忆的基础上,注重对知识点的理解和应用能力的拓展。理解能力不仅可以帮助同学们掌握知识点,还可以在考试中灵活运用,达到最大化的发挥效果。
计划五:做好错题和题型总结
针对之前的模拟考试或者月考中出现的错误题目,同学们应该有计划地分类归纳,明确出错原因并加强复习、强化。同时,对于每一个题型,同学们也要事先进行总结,将其分类、归纳,避免错题的重复出现。
计划六:不断自我调整
在计划执行过程中,同学们需要对自己的情况进行不断调整,制定适合自己的学习计划。在考前几天,重点需要注意自己的情绪状态,适当放松,不要给自己过多的压力,保持平和而积极的心态来迎接接下来的考试。
对于数学科目而言,只有严格执行计划,才能够真正做到东西的学习和掌握,取得高分的好成绩。在执行计划的过程中,同学们需要保持热爱学习的态度,进行合理分配和合理安排,不断调整算进度和内容,以最佳状态上考场。
以上就是我为大家提供的数学月考前学习计划,希望同学们可以有所收获,做好充分的复习准备,取得好的成绩。
数学学习活动计划篇9
1、突出主干知识,加强薄弱环节
在二轮复习中,对高中数学的重点内容:函数、不等式、数列、几何体中的线面关系、直线与圆锥曲线及新增加内容中的向量、概率统计、导数进行强化复习。其中,函数是高中数学的核心内容,又是学习高等数学的基础,贯穿于高中数学的始终,运用函数的观点,可以从较高的角度去处理方程、不等式、数列、曲线和方程等问题。打破知识之间的界限,加强各章节知识之间的横向联系。
在第二轮复习时,要求学生一是要认真分析自己一轮复习的感受及作业、试卷情况,针对第一轮的薄弱环节,加强研究。二是要针对性地选择一些课本的典型习题、近年的高考题、模拟题,甚至是第一轮中做过的题,集中强化训练,提高一个档次。
2、提高思维能力
解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径。要求学生重视审题和解体后的总结、反思,不断积累正、反两方面的经验。
3、注重心理训练
学习实力与心理状态是高考成功的两大基本要素,良好的心态是高考制胜的法宝。在测试或训练题中要在适当的位置设置障碍或有意识的引入新情景、新信息问题,有意识的锻炼学生心理素质,增强学生的应变能力和知识迁移能力,提高学生应试技巧。但要把握好度,不能过于挫伤学生的自信心和积极性;
4、提高计算能力
数学高考历来重视运算能力,80%以上的分数都要通过运算而来。部分运算能力差的学生至今仍然没有对此有足够重视,而是将运算能力差完全归结于粗心,认为平时运算是浪费时间。我们必须清楚地认识到运算是一种能力和技能,必须从每一道题做起,坚持长期训练,要能够根据题设条件,合理运用概念、公式、法则、定理,提高运算的准确性。
数学学习活动计划篇10
俗话说:“学好数理化,走遍天下都不怕。”这句话虽然说得有些夸张,但也充分说明了数学的重要性。为了提高自己的数学成绩,培养自己的数学兴趣,特拟定如下计划:
一、情况分析
在众多科目中,我的数学成绩最差,每次都考不了高分,长期以来,我对数学也失去了信心,影响了总成绩。
二、任务目标
通过本学期的努力,我要使自己消除对数学的厌烦心里,培养自己学好数学的信心,使自己的数学成绩有较大提高,为高三升学打下坚实的基础。
三、具体做法:
1、培养信心
2、养成习惯.每天做到课前预习,课后复习
3.抓住课堂。课堂上我认真听课,聚精会神,思维紧跟老师,不敢开小差。
4.加大练习力度
刚开始,我从最基础的题入手,以课本上的习题为准,反复练习,打好基础,再找一些课外的习题,帮助自己开拓思路,提高自己的分析、解决能力,掌握一般的解题思路。解题时要求自己细心、精确,以便不再考试时因粗心丢分。
5.牢记基础理论,善于利用辅导书籍,打好基本功——基础知识万万不可忽视。要把概念、公式都牢牢地印在脑海里。
6.高质量的完成作业。我每次要求自己认真完成老师布置的作业,遇到不会的题目决不轻易放弃,要发扬“钉子”精神,钻进去思考,是在做不出来就向老师和同学请教,这样自己就会对这道题留下深刻的印象,再次遇到相同类型的题时,便能迎刃而解了。
我相信,只要我坚持不懈,持之以恒,我的数学成绩一定能更上一层楼。
数学学习活动计划篇11
一、第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
二、第二阶段复习计划:
复习高数书上册第二章1—3节,需达到以下目标:
1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2。掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、了解高阶导数的概念,会求简单函数的高阶导数。
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记基本初等函数的导数公式;会用递推法计算高阶导数。
三、第三阶段复习计划:
复习高数书上册第二章4—5节,第三章1—5节。需达到以下目标:
1、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
2、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。
3、掌握用洛必达法则求未定式极限的方法。
4、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
5、会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当时,图形是凹的;当时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
四、第四阶段复习计划
复习高数书上册第四章第1—3节。需达到以下目标:
1、理解原函数的概念,理解不定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。
本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
五、第五阶段复习计划
复习高数书上册第五章第1—3节。达到以下目标:
1、理解定积分的几何意义。
2、掌握定积分的性质及定积分中值定理。
3、掌握定积分换元积分法与定积分广义换元法。
本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
六、第六阶段复习计划
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1、掌握积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式。
2、掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。
3、掌握用定积分计算一些几何量(如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
数学学习活动计划篇12
20__年进入岳阳职业技术学院,成为了一名老师。初出茅庐的我我作为一名新教师,需要师傅的指导和帮助,同时也要求自己不断的付出和努力。彭娅老师是一位很出色的教授,不管是在教育教学当中,或是科研课题上,都有自己独特的见解。但对我而言,不论是教育教学工作还是其他,我都存在着许多的不足,特别是对理论知识的掌握比较平乏,这就要求我不断的向您们请教和学习。现在我教的是《市场营销学》,因此,在带教活动中,我将认真做好笔记,及时请教,希望在彭娅教授的指导和帮助下,各方面都能很快的进步。为这次新教师学习计划,特制订以下计划:
1、抓紧自己的教学工作。教师首先是教书育人的行家,应该努力提高教育教学的能力。我们要通过互相听课,集体备课,走出去听课等一系列教学实践活动来帮助自己迅速成长。其中,制定授课计划、编写、制作课件等课前的准备工作,必须多带教老师请教,及时交予她检查,以便能指出更多的错误和不足。尽可能的多去听课,这样不仅能学习好的教学方法,还能了解更多驾驭课堂的技巧。能逐渐变成具有较高的教学专业水平和说课、评课能力以及课堂教学设计能力,逐步形成具有鲜明个性特征、有效的教育、教学风格。在教学改革中发挥带头、示范作用。
2、提高自己的专业水平,拓宽科学文化视野。专业课程的学习和研究,以及现代高等教育理论学科专业知识,熟悉国内外高等教育
教学理论与实践的最新成果,逐步构建更为合理的知识结构。有德尚需有才,德才兼备才是人才。无论是任课老师还是班主任要有扎实的专业功底,一个没有专业才能的教师,就谈不上教学效率,也不可能成为好老师。
3、尽可能的努力加入到教研和科研活动中。慢慢向带教老师学习科研能力,能具有承担教改实验的能力,总结教育教学经验和成果的能力,撰写教育教学论文的能力,与青年教师一起搞教改,共同搞教科研,总结教育教学经验,抓住机遇,自我加压,努力奋斗。
4、作一名有创新精神的合格人民教师。作为一名教师必须师德高尚,这是灵魂,也是前提。一是爱岗敬业;二是无私奉献;三是为人师表。教师必须是学生心目中的楷模和榜样,更重要的是能顺应时代的发展,具有创新精神。“教师的职责已经越来越少地传授知识,越来越多地激励思考;越来越成为一位顾问,一位交换意见的参与者,一位帮助发现矛盾而不是拿出真理的人。”做一位能满足学生需要的教师。
人文科学系:
20__年10月25日
数学学习活动计划篇13
暑假的重头戏之一,奥数学习。进行了一周有余,过程的曲折,差点让小松树和大松树都丧失了平和的心态。
小松树从来没有接触过奥数,但是妈妈心血来潮地“潮”了一回,紧紧跟随读书群的号召,奋勇冲向奥数的海洋。在测试初战告捷的状态下,立马定位尖子班,完全忘记了“摸清敌情、知己知彼”的旧训。
第一天,小松树兴高采烈地蹦蹦跳跳而去,嘴里念叨着“学而不思则罔,思而不学则殆。”测试时老师的亲切,奥数的神奇让他对“”的感觉相当美妙。但是第一天的学习,他就被打懵了。“”的难度,远远超出了平日里学校的附加题。小松树在那里神游,大松树在那里着急,忍不住用了很多严厉、可怕的表情,也让小松树无数次回头望,甚至在下课直面大松树:“妈妈,你的表情好可怕哦!你为什么要这种表情?”当然,为什么大松树这种表情小松树应该心知肚明“神游啊!神游!
第二天,小松树垂头丧气而去,当晚的课程更难,他的神游也更甚。甚至平日里相当活泼、相当喜欢起哄的他,课堂上竟然没有跟着其他男孩起哄。这一点,还受到老师表扬!额的神啊!奥数看来对他是一种折磨,折磨得人都变了性格。小松树一晚上的神游,大松树一晚上的焦心。走出教室,小松树终于恢复常态。不忘高呼:“打到奥数帝国主义!”“打到!”
第三天,小松树心灰意冷地上课。学习乘法,而他没背过九九表。高呼“老师,我没学过,背不了九九表。”这节课,大松树看多了前两日小松树的表现,按奈住激动的心情,开始尽量不去看小松树转过来的头,每当小松树一转头,大松树就装作认真地听老师上课,“以身作则、相当专心”。好在,上完课,小松树已经做完了书上的作业,不是最后一个走的了。临走,另一孩子的妈妈生气地把哭哭啼啼的孩子扔在教室一个人下楼了。这一幕,倒是深深地触动了大松树。为什么?原来是要来找乐子的,要来找思维之美的,最后变成了反感和哭泣?大松树失眠了,如何保护孩子学习的兴趣?兴趣才是最好的老师。好在小松树的记忆力不错,睡觉之前已经在家人的赞美声中花了20分钟背完了九九表。
第四天,学除法。有了头一晚的基础,小松树又有驾轻就熟的感觉了,上课状态迅速恢复,大松树在教室后部也可以均匀地喘气了。回家路上,开始开心起来:“呵呵,奥数也没啥了不起的,没有多难啊!”
第五天,比较轻松地学习。
第六天,恢复了顽皮的本性,被姚老师狠狠收拾。收拾得好!课堂就是课堂!
感想:兴趣是学习的老师,如何保护孩子的兴趣真是每个家长一门很重要的功课。社会的竞争,让我们过早地开始开发孩子的心智,还打着爱的名义。而竞争,又让我们不敢不让他们学习十八班解数来对付中国的教育体制。在悲哀的大环境中,如何创造小环境让孩子们不失去悟性与灵光?就数学来说,这是一门需要静心、严谨的科学,必须有严格的学习要求。但是在这里面,作为家长,可以给孩子更多鼓励与赞美,树立孩子的自信与爱学;老师,可以给更多孩子们发言的机会、求异的机会,让他们在探索中启迪。
数学学习活动计划篇14
这次的高一数学期末考试,是全市高中统考,试卷要拿到区里统改,并要进行全区排名。为了做好复习迎考工作,使备课组活动做到有目的、有步骤地进行,与城里的高中缩小差距,特制定如下复习计划:
一、指导思想
做好高一数学复习课教学,对大面积提高教学质量起着重要作用。高一数学期末复习应达到以下目的:
使所学知识系统化、结构化、让学生将一学期来的数学知识连成一个有机整体,更利于学生理解;
少讲多练,巩固基本技能;
抓好方法教学,归纳、总结解题方法;
做好综合题训练,提高学生综合运用知识分析问题的能力。
二、明确复习范围及重点
范围:必修1与必修4
重点:必修1:函数的基本性质,指数函数,对数函数;必修4:三角函数,平面向量。
三、复习要求
1、重点复习掌握核心概念、基础知识、强调作图、解题规范;
2、围绕综合卷加强对差生的个别辅导、面批,争取提高合格率。
四、复习要点:
掌握各章知识结构和要点、知识点、澄清概念、解决疑难问题。
习题归类,解题思路、方法,从解题中对知识加深理解、掌握,提高分析问题,解决问题的能力
五、具体课时安排
由于教学时间紧,按照计划估计要到12月31号才能结束新课,复习时间大约8天左右,巩固练习主要是让学生在课下完成,上课讲评。具体安排如下:
20__年元月1日前结束新课;
2日——————6日复习必修1:集合(1天)、函数(2天);
7日——————8日复习必修4:三角函数(1天)、平面向量(1天);9日——————10日必修1、4综合训练。
六、复习方法
1、根据学生的薄弱点,有针对,有系统地设计4份复习案,其中集合与函数2份,三角函数与平面向量2份,综合训练试卷4份。
2、利用星期二、五早读课时间对优生进行补短,主要是补基础知识,看学生基础知识有没有记住,记住了会不会应用,再找一些基本题让学生练。
3、时间很紧,要求我们稳扎稳打,让每一节课都高效,每节课的导学案都当堂完成,晚自习让学生处理更多的典型题。
数学学习活动计划篇15
数学开学学习计划
随着新学期的到来,为了顺利度过本学期的数学学习,我们需要制定一份详细的数学开学学习计划。数学是一门基础学科,是学习其他学科的基础。既然选择了这个学科,就应该全力以赴,充实自己。
第一步:查缺补漏
首先,我们需要找出自己在数学学科上的薄弱环节,查缺补漏。数学知识点之间是有紧密联系的,所以我们需要把每个知识点吃透,这样才能保证平稳过渡到新的学习阶段。可以通过看视频课、个人自学、请教老师等方式进行查漏补缺。
第二步:合理安排学习时间
每个学期的学习时间都是有限的,所以我们需要根据每周的课程安排,合理地安排我们自己的学习时间。在为数学学习留足足够的学习时间的同时,还要考虑到其他学科的学习,避免因为一门学科的学习而影响其他学科的成绩。
第三步:多练习
数学是一个需要反复练习的学科。在学习新的知识点后,同学们需要进行反复的课后习题练习。练习能够巩固我们的知识点,发现我们的薄弱环节,并且能够提升我们的解题能力。
第四步:学会总结
在学习新知识点后,我们需要学会总结。做一个知识点的总结笔记,能够帮助我们深层次地理解和记忆知识点。不仅如此,通过总结策略,我们能够形成自己的解题思路,从而快速反应和解决问题。
第五步:参加课外辅导
课外辅导对于数学学科的同学们来说,是非常有益的。课堂上时间有限,难免遇到解释不清楚或者难以理解的知识点。参加课外辅导,可以让我们得到更加贴心的解答,并且能够针对自己的薄弱环节进行剖析和提升。
总之,数学学科是一门永远不会过时的学科,它将伴随着我们整个学生时期,甚至与我们未来的职业生涯有着紧密的联系。因此,我们需要制定详细的学习计划,养成良好的学习习惯,不断努力提升自己,用学习成绩证明自己的实力,为自己的未来打下坚实的基础。